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This paper consists of two parts. First we set up a general scheme of local traps
in a homogeneous deterministic quantum system. The current of particles
caught by the trap is linked to the dynamical behaviour of the trap states. In
this way, transport properties in a homogeneous system are related to spectral
properties of a coherent dynamics. Next we apply the scheme to a system of
Fermions in the one-particle approximation. We obtain in particular lower
bounds for the dynamical entropy in terms of the current induced by the trap.
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1. INTRODUCTION

In this paper, we are interested in time scaling properties of propagation
by coherent quantum dynamics. Non-trivial behaviour of a single-particle
Hamiltonian can lead to a description of anomalous diffusion of electrons
in solids. (1) This behaviour becomes apparent through the scaling of the
spreading of one-particle wave functions with respect to time. We shall here
adopt another approach: we introduce a localised trap in an infinite system
and study the time behaviour of the current of particles falling in the trap.
Applied to systems of Fermions in the non-interacting approximation, we
obtain a lower bound on the dynamical entropy in terms of this current.



The trap states will be described by a collection of wave functions and
we relate the current to the dynamics of these states. In particular, we show
that an absolutely continuous spectrum produces a non-zero asymptotic
current. A singular spectrum will lead to asymptotically vanishing currents
possibly characterised by a dynamical exponent.
A number of related topics and models have been considered in the

literature, mostly for the case of a continuous time evolution. The occur-
rence of singular continuous spectra as a source of anomalous diffusion
is caused either by randomness in the Hamiltonian or by aperiodicity. We
shall however not be concerned by producing such models but rather link
scaling properties of dynamical entropy to assumed spectral properties of a
discrete dynamics.
Coherent transport in quantum systems is being studied by using

reservoirs as drivers. A number of delicate questions arise in this context
with respect to the thermodynamic limit. Anomalous transport due to
spatial randomness in the dynamics seems to occur. (2)

Strongly chaotic classical or quantum dynamical systems generate
entropy at a non-zero asymptotic rate: the dynamical entropy. In the clas-
sical case, the sum of the positive Lyapunov exponents is a bound for the
entropy (Ruelle’s inequality) and equality is reached for sufficiently smooth
systems (Pesin’s theorem). For quantum dynamical systems several entro-
pies have been introduced such as the CNT construction based on a
coupling with a classical system and the ALF construction that relies on
POVM’s (operational partitions of unity). In order to obtain a non-zero
entropy an absolutely continuous dynamical spectrum is needed, at least
for Fermion systems in the one-particle approximation. (3) In open classical
systems, the escape rate formalism links the escape exponent from an
unstable repeller to diffusive transport. The escape rate is given by the
missing exponents in the entropy for motion on the repeller. (4)

There are however many mixing dynamical systems with less pro-
nounced randomising properties which are not given in terms of exponents
or rates. Such dynamics may lead to a sublinear scaling for the total
dynamical entropy. (5)

The aim of this work is to establish a lower bound for the entropy in
terms of dynamical exponents of a localised trap in an infinite system both
in the regular and the anomalous case.
As a motivation we provide in Section 2 a few simple examples of

the use of a trap in classical dynamics. Obviously there is a different physi-
cal mechanism at work with possibly similar macroscopic effects but our
aim is to show that the time behaviour of the current at the edge of a
localised trap encodes relevant information about the transport properties
of the dynamics. Because of the locality of the trap, it is possible to deal
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immediately with an infinite system and to avoid using a delicate large
volume limit of boundary conditions. Section 3 deals with localised traps in
unitary Hilbert space dynamics and we study in Section 4 the dynamical
entropy for non-interacting Fermions. We obtain in particular a lower
bound for the entropy in terms of the current of particles falling in a trap.

2. TRAPS IN A CLASSICAL CONTEXT

Consider first the simplest classical counterpart of a trap absorbing
free electrons moving with velocities below that corresponding to a given
Fermi level. This is a system of classical particles homogeneously distrib-
uted in space and with uniform velocity distribution below a maximal one.
The state of such a system is a uniform mixture of spatially homogeneous
states with fixed velocity. The number of particles per time unit caught in a
localised trap is constant in time and essentially determined by the average
cross-section of the trap.
Next we consider the model of the diffusion equation in one dimension

with a trap at the origin. We have to find the solution of the equation

“n
“t
=D

“
2n
“x2

for x > 0 and t > 0 with boundary condition n(0, t)=0 and initial condi-
tion n(x, 0)=1. In this equation D is the diffusion constant and n(x, t)
represents the particle density at time t and place x and the particle current
is given by Fick’s law

j(x, t)=−D
“

“x
n(x, t).

The solution of the diffusion equation reads

n(x, t)=
2
p
F
.

0
dk
sin(kx)
k

e−Dk
2t.

Therefore, the current at x=0 is

j(t)=−
2D
p

F
.

0
dk e−Dk

2t=−
`D

`pt
.

We recover hereby the usual exponent for diffusion.
The third example is a simple random walk in one dimension with the

site zero absorbing the walker. Let p(x, t) denote the probability that the
walker reaches the origin for the first time at time t starting out at site x.
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We may assume that x ¥N. The probabilities p are determined by the
recursion relation

• p(0, 0)=1 and p(0, t)=0 for t > 0

• p(x, t)=0 whenever x > t

• p(x, t)=1
2 (p(x−1, t−1)+p(x+1, t−1)).

It can be checked that the solution is given by

p(x, t)=˛ 12 t 31 t−1(t−x)/2
2−1 t−1

(t−x−2)/2
24 t−x even integer

0 else.

The current at time t is then given by

J(t)=C
t

x=1
p(x, t)=

1
2 t
1 t−1
[(t−1)/2]

2 ’ 1

`2pt
.

In this formula, [x] denotes the largest integer less or equal to x.
Finally, a random walk on Z3 with a trapping set A leads to a total

current JA(t)=dNA(t)/dt where NA(t) is the total number of particles
trapped by the set A up to time t. It turns out that

JA(t) ’ C(A)+2(2p)−3/2 C(A)2 t−1/2,

where C(A) is the capacity of the set A. (6) Again, the behaviour of the
current returns the relevant information on the transport properties of the
system.
The remainder of this paper will deal with reversible quantum dynam-

ics. We shall first study in Section 3 the connection between the current at a
local trap and the spectral properties of the evolution. In Section 4 we shall
concentrate on a simplified model of an infinitely extended Fermion system
and relate the current at a trap with the dynamical entropy of the system. It
is necessary to deal with infinite quantum systems as the quantizations of
conservative classical dynamical systems with compact phase spaces have
an almost periodical time evolution. This not only prohibits true ergodic
behaviour but even puts a finite upper bound on the total entropy.
Still, in the classical context, there is a vast literature on diffusive

phenomena for classical deterministic models such as the Lorentz gas or
the multibaker maps. One connects in this context diffusive characteristics,
such as the escape rate, with chaotic characteristics of the system, such as
Kolmogorov–Sinai entropy (rate) and Lyapunov exponents. Rather than
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looking at localised traps, as we propose, one considers particles escaping
or entering the system at infinity. Recent results are reviewed in refs. 7
and 8.
The lower bound for the entropy in terms of the current that we shall

obtain remains valid for systems with an abnormal behaviour, i.e., systems
for which the entropy scales sublinearly in time. This has also, at least
numerically, a classical counterpart, e.g., a Lorentz gas with diamond-
shaped scatterers, see ref. 9.

3. TRAPS IN HILBERT SPACE

We first consider an abstract model of a trap that absorbs particles.
An explicit connection with a model of Fermions will be presented in Sec-
tion 4. The basic ingredients of our description are an infinite dimensional
Hilbert space H, a unitary operator U on H which specifies the evolution
during a single time step, and a non-negative operator A less or equal than
1 which describes the effect of the trap. We shall assume that the trap
is local in the sense that it is of finite rank d. Writing its eigenvalue
decomposition

A=C
d

j=1
pj |kjPOkj |, 0 [ pj [ 1

we can think of pj as the probability that a particle in the state |kjP is
absorbed by the trap when hitting the trap once. A value of pj to 1 means
that the trap captures particles very efficiently in the state |kjP.
Starting out with a density 0 [ r [ 1, the density after one time step

and hitting once the trap becomes

(1−A) UrUg(1−A)=(TU) r(TU)g

with T :=1−A. Assuming a uniform initial distribution, i.e., r a scalar
multiple of 1, the number of particles absorbed up to time t by the trap is
proportional to

NA(t) :=Tr(1−(TU) t (UgT) t). (1)

The operator (TU) t (UgT) t is a finite rank perturbation of 1, therefore
formula (1) makes sense.
We shall always assume that eventually infinitely many particles are

absorbed by the trap. This will certainly be the case if the dynamics has
reasonable randomising properties. We are in particular interested in the
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scaling behaviour of NA(t) with time, i.e., in the exponent c governing the
asymptotics of NA

NA(t) ’ t1− c, t large.

The exponent c is non-negative as the growth of NA is at most linear in
time and cannot exceed the value 1 by our assumption limtQ. NA(t)=..
We expect this scaling to be related to the spectral properties of U and to
be independent of the size of the trap. Using the telescopic formula

1−(TU) t (UgT) t=C
t−1

s=0
(TU) s (1−T2)(UgT) s,

we rewrite for t \ 1 NA(t) in terms of a current JA

NA(t)=C
t

s=1
JA(s)

with

JA(t) :=NA(t)−NA(t−1)

=Tr{(1−(TU) t (UgT) t)−(1−(TU) t−1 (UgT) t−1)}

=Tr(TU) t−1 (1−T2)(UgT) t−1. (2)

The expected scaling behaviour of JA is then

JA(t) ’ t−c, t large.

The actual analysis will be performed for the simple case where A is a
one-dimensional projector |jPOj| with j a normalised vector in H and we
shall henceforth drop the subscripts of N and J. In this case, N is fully
determined by the probability measure

m(dh) :=||E(dh) j||2 (3)

on the unit circle S1 where E is the spectral measure of U

U=F
S1
e−ih E(dh).

The expression (2) for the current now becomes

J(t)=||(1−Pt−1) · · · (1−P1) j||2, t > 1 (4)
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with Pt the orthogonal projector on U−tj. For consistency we must put
J(1)=1. As (1−Pt) is a contraction, J is a monotonically decreasing
function and therefore

J. :=lim
sQ.
J(s)

exists. The behaviour of the current provides information on the transport
properties of the system. As we don’t have in our general description a
notion of position operator, allowing a definition of ballistic or diffusive
motion in terms of spatial spreadings of wave functions, we shall rather
concentrate on the relation between the current and the randomising
properties of the dynamics which are quantified by the dynamical entropy.
This is, within the context of non-interacting Fermion systems, the subject
of Section 4. In this section we shall study the asymptotic current in terms
of the dynamical properties of the trap states for the simple one-state trap.
The analysis could be extended to more involved traps that have a spatial
structure. The more complicated behaviour of the subsequent current could
then be studied as in the case of the 3D classical random walk, leading
possibly to quantum capacities.
In order to relate the measure m with J., we introduce for |z| < 1 the

function

G(z) :=C
.

s=1
z s m N(s), (5)

where m N is the Fourier transform of m

m N(t) :=F
S1

m(dh) e−ith, t ¥ Z. (6)

Expressing G in terms of m, we find

G(z)=F
S1

m(dh)
z

e ih−z
.

Obviously, G is analytic in the open unit disc and we shall be concerned
with its value on the boundary of the disc. Writing z=re ig with 0 [ r < 1,
a direct computation shows that

1+2Re G(re ig)=F
S1

m(dh)
1−r2

1+r2−2r cos(g−h)
. (7)
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The function

dr(h) :=
1−r2

1+r2−2r cos h
,

is the Poisson kernel and the dr are a d-convergent sequence of smooth,
positive, normalised functions

1
2p

F
2p

0
dh dr(h)=1

and

f(g)=lim
r ‘ 1

1
2p

F
S1
dh f(h) dr(h−g) a.e. (8)

for any integrable function f on the unit circle. By a.e. we shall always
mean almost everywhere with respect to the Lebesgue measure.
The imaginary part of G is given by

Im G(re ig)=F
S1

m(dh)
r sin(g−h)

1+r2−2r cos(g−h)
.

When r tends to 1, we obtain the Hilbert transform of m (10, 11)

(Hm)(g)=lim
r ‘ 1

F
S1

m(dh)
sin(g−h)

1+r2−2r cos(g−h)

=lim
d a 0

1
2
F
|g−h| \ d

m(dh) cot 1g−h

2
2 . (9)

The limits in (9) exist almost everywhere and for each E > 0 the set on
which |Hm| is larger than 1/E has Lebesgue measure less or equal to E. We
shall now express the current and asymptotic current in terms of G and
thus in terms of the spectral properties of the trap, i.e., of the measure m.

Lemma 3.1. With the notation of above

J(t)=1− C
t−1

s=1
|K(s)|2, (10)
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where the function K is determined by the relation

F(z) :=
G(z)
1+G(z)

=C
.

s=1
z sK(s), |z| < 1. (11)

The asymptotic current is given by

J.=lim
r ‘ 1

1
2p

F
S1
dh
1+2Re G(re ih)
|1+G(re ih)|2

. (12)

Proof. We introduce

K(t) :=O(Ug) t j, (1−Pt−1) · · · (1−P1) jP

and denote by F the Z-transform of K

F(z) :=C
.

s=1
z s K(s), |z| < 1. (13)

The relation (10) follows from a straightforward computation

J(t)=||(1−Pt−1) · · · (1−P1) j||2

=||(1−Pt−2) · · · (1−P1) j||2

−|O(Ug) t−1 j, (1−Pt−2) · · · (1−P1) jP|2

=J(t−1)− |K(t−1)|2.

Next, we write

(1−Pt) · · · (1−P1) j=(1−Pt−1) · · · (1−P1) j−K(t)(Ug) t j.

Therefore

(1−Pt) · · · (1−P1) j=j− C
t

s=1
K(s)(Ug) s j. (14)

Taking the scalar product of (Ug) t+1 j with (14), we obtain

K(t+1)=O(Ug) t+1 j, jP− C
t

s=1
O(Ug) t−s+1 j, jP K(s). (15)
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Equation (15) has the structure of a one-sided convolution equation. Using
the Z-transform it becomes an algebraic equation. More precisely, multi-
plying (15) with z t+1 and summing from t=0 to ., we obtain

F(z)=G(z)−F(z) G(z).

As by (7) 1+G never vanishes inside the unit disk

G(z)
1+G(z)

=F(z)=C
.

s=1
z s K(s),

proving (11).
The basic relation between the asymptotic current J. and the measure

m is obtained by applying Parseval’s formula to (13). Putting z=re ig

1
2p

F
S1
dg |F(re ig)|2=C

.

s=1
r2s |K(s)|2. (16)

We compute now the asymptotic current on the basis of (10)

J.=lim
tQ.
J(t)=1− lim

tQ.
C
t−1

s=1
|K(s)|2

=1− lim
r ‘ 1

C
.

s=1
r2s |K(s)|2=1− lim

r ‘ 1

1
2p

F
S1
dh |F(re ih)|2

=lim
r ‘ 1

1
2p

F
S1
dh
1+2Re G(re ih)
|1+G(re ih)|2

. L (17)

Our first result deals with the asymptotic current for trap states with
absolutely continuous dynamical spectrum.

Theorem 3.1. Suppose that m is absolutely continuous w.r.t. the
Lebesgue measure, then J. > 0.

Proof. Let m be absolutely continuous with respect to the Lebesgue
measure with density r. We have for r < 1

(1+2Re G)(re ig)=
1
2p

F
S
1
dh r(h+g)

1−r2

1−2r cos h+r2
.
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Because r is integrable and because of the properties of the Poisson kernel

lim
r ‘ 1
(1+2Re G)(re ig)=r(g) a.e.

Also the imaginary part of

zW
1
2p

F
S
1
dh r(h)

z
e ih−z

converges almost everywhere to the Hilbert transformHr of r(h) dh:

lim
r ‘ 1

Im G(re ig)=(Hr)(g) :=lim
d a 0

1
4p

F
|h| \ d
dh r(h+g) cot 1h

2
2 .

In the expression for the asymptotic current

J.=lim
r ‘ 1

1
2p

F
S
1
dh (1− |F(re ih)|2)

=lim
r ‘ 1

1
2p

F
S
1
dh

1+2Re G(re ih)
1+2Re G(re ih)+(Re G)2 (re ih)+(Im G)2 (re ih)

the integrand is bounded by 1 and tends almost everywhere to

4r(h)
(1+r(h))2+4(Hr)2 (h)

as r grows to 1. We can therefore apply the dominated convergence
theorem to obtain

J.=
1
2p

F
S
1
dh

4r(h)
(1+r(h))2+4(Hr)2 (h)

> 0. L

In (17), we have replaced a limit tQ. by a limit r ‘ 1. In fact more
information can be gained in doing so. Indeed, in the case J.=0, the
behaviour of J(t) for large t is that of 1−; t−1

s=1 |K(s)|
2. The function

J̃(r) :=1− C
.

s=1
r2s |K(s)|2, 0 [ r < 1 (18)
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is expressed in terms of the discrete Laplace transform of sW |K(s)|2

and Tauberian theorems relate the large time behaviour of tW J(t)=
1−; t−1

s=1 |K(s)|
2 with that of J̃(r) when r ‘ 1. We shall first use this idea to

show that J. vanishes when m is singular. Next, we shall in a few examples
consider convergence exponents.

Theorem 3.2. If m is singular w.r.t. the Lebesgue measure, then
J.=0.

Proof. Let m be singular and hence concentrated on a measurable set
with zero Lebesgue measure. As the Lebesgue measure of this set equals
the infimum of the Lebesgue measures of open subsets containing the set,
we can given any positive E find an open subset A of S1 such that the
Lebesgue measure of A is not larger than E and m(A)=1. The set A is a
countable union of disjoint open intervals ]aj, bj[. We dress each of the
]aj, bj[ with open strips of width dj which shall be determined later on. By
choosing the dj sufficiently small we may still ensure that the Lebesgue
measure of A+ :=1j ]aj−dj, bj+dj[ is small.
We shall also need

1
2p

F
|h| \ d
dh

1−r2

1+r2−2r cos h
[ 1 for d [ 1−r

[
1−r

d
for d \ 1−r. (19)

The estimate for the case d > 1−r is obtained as follows:

1
2p

F
|h| \ d
dh

1−r2

1+r2−2r cos h
=
1
p
F
p

d

dh
1−r2

1+r2−2r cos h

[
2(1−r)

p
F
p

d

dh
1

1+r2−2r cos h

=
2(1−r)

p
F
p

d

dh
1

(1−r)2+2r(1− cos h)

[
(1−r)

pr
F
p

d

dh
1

1− cos h

[
1−r

d
for d sufficiently small.
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We now estimate the current

J̃(r)=
1
2p

F
S
1
dg(1− |F(re ig)|2)

=
1
2p

F
A+
dg(1− |F(re ig)|2)+

1
2p

F
S
1
0A+
dg(1− |F(re ig)|2)

[ E+2 C
j

dj+
1
2p

F
S
1
0A+
dg(1− |F(re ig)|2)

=E+2 C
j

dj+
1
2p

F
S
1
0A+
dg

1+2Re G
1+2Re G+(Re G)2+(Im G)2

(re ig)

[ E+2 C
j

dj+
1
2p

F
S
1
0A+
dg

1+2Re G
1+2Re G+(Re G)2

(re ig)

[ E+2 C
j

dj+
2
p
F
S
1
0A+
dg F

S
1

m(dh)
1−r2

1+r2−2r cos(g−h)

=E+2 C
j

dj+
2
p
F
S
1
0A+
dg F

S
1

m(dh) dr(g−h)

[ E+2 C
j

dj+
2
p
F
A

m(dh) F
S
1
0A+
dg dr(g−h). (20)

In the last but one inequality we have used that the integrand is bounded
from above by 4(1+2Re G). In the last inequality we use (19) to get

J̃(r) [ E+2 C
j

dj+
2
p
1 C

k
dk < 1−r

m(]ak, bk[)2

+
2
p
(1−r)1 C

k
dk \ 1−r

m(]ak, bk[)
dk
2 . (21)

For a given E and a given large N, we may take dk=Nm(]ak, bk[)(1−r).
When r is sufficiently close to 1, the upper bound for J becomes

J̃(r) [ E+2N(1−r)+
2
p
1 C

k
Nm(]ak, bk[) < 1

m(]ak, bk[)2

+
2
Np
#({k | Nm(]ak, bk[) \ 1}). (22)
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First we fix an arbitrary small E and the corresponding sets ]ak, bk[. The
second last term in (22) can be made small by choosing N sufficiently large.
Also the last term becomes small because the nth term in a converging,
monotonically decreasing, non-negative series is of order o(1/n). Finally
the second term in (22) becomes small when we let r ‘ 1. L

We conclude this section with some examples, remarks and partial
results about exponents. Let us assume that we are in the situation J.=0
and that we can assign an exponent to J, i.e.,

c :=lim
tQ.
−
log J(t)
log t

exists. We shall, moreover, assume that infinitely many particles eventually
are absorbed by the trap and actually strengthen this condition to c < 1.
We are interested in relating the behaviour of tW J(t) as tQ. with that
of rW J̃(r) as r ‘ 1. We therefore introduce upper and lower exponents ā

and a
¯
for J̃

ā :=lim sup
r ‘ 1

log J̃(r)
log(1−r)

and a
¯
:=lim inf

r ‘ 1

log J̃(r)
log(1−r)

.

Lemma 3.2. Using the notations and assumptions of above,
ā=a

¯
=c.

Proof. We have to consider

J(t)=1− C
t−1

s=1
|K(s)|2=C

.

s=t
|K(s)|2 and

J̃(r)=1− C
.

s=1
r2s |K(s)|2=C

.

s=1
(1−r2s) |K(s)|2.

For notational convenience, we put ct :=|K(t)|2 and l :=−2 log r.
Let a > c, then

lim
l a 0

l−a C
.

s=1
(1− e−ls) cs \ lim

l a 0

11−1
e
2 l−a C

.

s=[l −1]
cs

= lim
NQ.

11−1
e
2Na C

.

s=N
cs=..

Hence, a
¯
\ c.
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Conversely, let a < c and introduce the short notation f(N) :=
;.

s=N cs. Fix an arbitrary E > 0 and a c0 such that a < c0 < c. For l > 0 and
o=2, 3,..., let Ñn be determined by

exp(−lÑn)=
o−n

o
, n=1, 2,..., o−1

and put Nn :=[Ñn]+ where [x]+ is the smallest integer larger or equal to x.
We shall pick o later on in such a way that o ° l−1. This implies that the
Nj are far apart, in particular that N1 ± 1. We now have obtained a
partition

1=: N0 °N1 ° · · · °No−1 °No :=+.

of N0 such that

1− e−lt [
n+1

o
for Nn [ t < Nn+1.

C
.

s=1
(1− e−ls) cs=C

o−1

n=0
C

Nn+1 −1

s=Nn

(1− e−ls) cs

[ C
o−1

n=0

n+1
o

C
Nn+1 −1

s=Nn

cs

=C
o−1

n=0

n+1
o
(f(Nn)−f(Nn+1))

[
1
o
(f(N0)+f(N1)+· · ·+f(No−1))

[
1
o
(1+EN−c01 +·· ·+EN−c0o−1). (23)

The inequality in (23) holds for N1 large enough, i.e., for o sufficiently
large. Because Ñn=[

1
l
log( oo−n)]

+ we have

N−c0n < 1
1
l
log 1 1

1− no
22−c0
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and thus

C
.

s=1
(1− e−ls) cs [

1
o
+

E

o
C
o−1

n=1

11
l
log 1 1

1− no
22−c0

[
1
o
+lc0

E

o
C
o−1

n=1
(log 1 1

1− no
22−c0

[
1
o
+lc0 E F

1

0
dy 1 log 1 1

1−y
22−c0

=
1
o
+lc0 E F

1

0
dt 1 log 1

t
2−c0

=
1
o
+lc0 E C(1− c0)

[ dlc0

with d arbitrarily small. This last inequality is obtained by choosing
l−c0 ° o ° l−1 which is possible because 0 [ c0 < 1. Hence ā [ c and the
lemma is proven. L

When estimating the current in the proof of Theorem 3.2 we dropped
the contribution of Im G. Generally, this may lead to underestimate the
exponent. A simple example is provided by a measure m that is concen-
trated on a finite set such as m(dh)=d(h) dh (the general case being quite
similar). A simple calculation shows that F(z)=z. Therefore

1
2p

F
S
1
dg(1− |F(re ig)|2)=1−r2 ’ 2(1−r)

and the true exponent is 1. Dropping the imaginary part of G in the
integral, we get an exponent 1/2:

1
2p

F
S
1
dg

1+2Re G
1+2Re G+(Re G)2

(re ig)=
1
2p

F
S
1
dg
(1−r2)(1+r2−2r cos g)

(1−r cos g)2

’ F dx
(1−r) x2

(2(1−r)+x2)2

’`1−r.
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Let m be a discrete measure, possibly concentrated on a dense subset
ofS1,

m(dh)=C
j

rjd(h−hj) dh

with

rj \ 0, C
j

rj=1 and i ] jS hi ] hj.

Applying the estimates in the proof of Theorem 3.2 we obtain

J̃(r) [ 2 C
j

dj+
2
p

C
j

dj \ 1−r

rj(1−r)
dj

+
2
p

C
j

dj [ 1−r

rj. (24)

Suppose that the rj tend sufficiently rapidly to zero in order that also
;j `rj <.. Choosing dj=`(1−r) rj, we obtain

J̃(r) [ 2 11+1
p
21C

j
`rj 2 `1−r

and therefore an exponent 1/2. In view of the first example, this is the best
exponent we can hope to obtain neglecting the contribution of the imagi-
nary part of G.
Suppose that rj ’ j−a with a > 1. Choosing in (24) dj=Nrj(1−r) with

N large, we obtain

J̃(r) [ 2N(1−r)+
2
Np
# 13 j : rj \

1
N
42+2

p
C
j

rj [
1
N

rj.

The optimal choice for N is N ’ (1−r)−a/(2a−1) and this yields an exponent
(a−1)/(2a−1) < 1/2. The exponent 1/2 is reached for all rj that tend
faster to zero that any inverse power of j.
In our last example the measure m will be singular continuous. (12)

Given a number x ¥ [0, 1], we write its binary expansion as

x= C
.

m=1

am(x)
2m
,

where am(x) ¥ {0, 1} for m \ 1. This defines a map F: {0, 1}N Q [0, 1]
which can be used to transport a measure l on {0, 1}N to a measure m on
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[0, 1] by the relation m(A)=l(F−1[A]). Take for l the infinite product of
the measure (1−p, p), p ¥ [0, 1]. The corresponding measure m on [0, 1] is
called the Bernoulli measure mp. Except for p=0, p=1 (Dirac measures)
and p=1/2 (Lebesgue measure), mp is singular continuous.
We want to estimate the exponent a of the current J̃(r) ’ (1−r)a.

Assume 0 < p < 1/2 and let q be a number between p and 1/2. Define the
sets A(n) for n \ 1 as

A(n)={x ¥ [0, 1] | #{m [ n | am(x)=1} < qn}.

The asymptotic behaviour of the Bernoulli measure is

1−mp(A(n)) ’ exp(−nS(q | p)),

whereas for the Lebesgue measure

|A(n)| ’ exp(−nS(q | 1/2)),

with S(p1 | p2) the relative entropy of the probability measures (p1, 1−p1)
with respect to (p2, 1−p2), i.e.,

S(p1 | p2) :=p1 log(p1)+(1−p1) log(1−p1)

−p1 log(p2)−(1−p1) log(1−p2).

The sets A(n) are finite unions of K(n) intervals Ak(n) for which the first n
digits of the binary expansion are given. We have the asymptotics

K(n) ’ exp(nS(q)),

where S(q) is the Shannon entropy of the probability measure (q, 1−q),
i.e.,

S(q) :=−q log(q)−(1−q) log(1−q).

As in the proof of Theorem 3.2 we dress the intervals Ak(n) by small
strips of length dk(n). This results in the set A+(n). We can then use the
estimate (20) for the current J̃(r)

F
S0A+(n)

dg 3F
A(n)

mp(dh) dr(g−h)+F
S0A(n)

mp(dh) dr(g−h)4

[
2
p

C
k

dk(n) < 1−r

mp(Ak(n))+(1−r) C
k

dk(n) > 1−r

mp(Ak(n))
dk

+(1−mp(A(n))).
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Again taking dk(n)=Nmp(Ak(n))(1−r), we obtain

J̃(r) [ |A(n)|+2N(1−r)+ C
k

Nmp(Ak(n)) < 1

mp(Ak(n))

+
1
N
#{k | Nmp(Ak(n)) > 1}+(1−mp(A(n))).

Imposing now the scaling behaviour N ’ exp(nn) and 1−r ’
exp(−nb), we find

a \ 3min{S(q | 1/2), b− n, n−S(q), S(q | p)}
b

4

for any q, n, and b. The optimal values are

q=
log 2(1−p)
log p

1−p

(for which S(q | 1/2)=S(q | p)), n=log 2 and b=2 log 2−S(q). Finally,
the lower bound for the exponent a is

a \
log 2−S(q)
2 log 2−S(q)

. (25)

We compare this bound with some numerical computations. For a few
pairs (p, r) the integrals for G(z) and J̃(r) were evaluated on an equidistant
mesh of 213 points. To illustrate the approximation made in (20) by drop-
ping Im G, we performed the computation both with and without this
imaginary part. The relative precision for the current J̃(r) was checked to
be better than 0.01, while for the exponent a it is 0.1. Figure 1 shows the

10
–3

10
–2

10
–1

10
–2

10
–1

10
0

1– r

J(
r)

p=0.95

10
–3

10
–2

10
–1

10
0

1– r

J(
r)

p=1/3

10 
–0.2 

Fig. 1. The current J̃(r), with (crosses) and without (circles) the contribution Im G. Left,
p=1/3 and right, p=0.95.
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Table I. Estimates for the Exponent a

analytical numerical without Im G numerical with Im G

p=1/3 2.05×10−2 3.7×10−2 5.6×10−2

p=0.95 1.96×10−1 3.2×10−1 4.2×10−1

existence of the exponents and the error introduced by neglecting the imag-
inary part of G(z). The latter is quantified in Table I. For this example the
lower bound (25) for a is rather sharp.

4. DYNAMICAL ENTROPY OF A FERMION DYNAMICS

We shall in this section apply our results in the setting of a free
Fermionic gas. As this is a system of non-interacting particles, it is com-
pletely described in terms of single-particle quantities. Second quantisation
allows to lift one-particle objects to the many particles, taking into account
the Fermi statistics. We remind here briefly the mathematical setup.
We shall denote the single-particle Hilbert space by H. The observables

of the Fermion algebra, also called CAR for canonical anticommutation
relations, is the C*-algebraA(H) determined through the relations

a(f+ag)=a(f)+āa(g), {a(f), a(g)}=0, and {a(f), ag(g)}=Of, gP.

Sometimes we shall deal with a one-particle space H of finite dimension d.
In this case A(H) is easily seen to be isomorphic to the algebra of matrices
of dimension 2d. An explicit construction is given in terms of linear trans-
formations of the antisymmetric Fock space C(H) which is spanned by the
n-particle vectors

ag(f1) ag(f2) · · · ag(fn) W

for 0 [ n [ d. The normalised vector W is called the vacuum and it is
annihilated by any operator a(f).
The construction of dynamical entropy of a conservative evolution G

presented in refs. 13 and 14 is based on the following idea. Given a unital
C*-algebra A and a reference state w, one considers an operational parti-
tion, i.e., a finite collection X={x1, x2,..., xn} of elements of A satisfying
;j x

g
j xj=1. This yields a correlation matrix

r[X] :=[w(xgj xi)]
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with corresponding von Neumann entropy

H[w, X] :=Tr g(r[X]),

where g is the usual entropy function

g(0) :=0 and g(x) :=−x log x, 0 < x [ 1.

The average entropy of an operational partition X=(x1, x2,..., xn) arises
by computing the average entropy of the correlation matrix Xt correspond-
ing to the refinement of the partition X at discrete times up to t−1. More
precisely

Xt :=G t−1(X) p · · · p G(X) p X.

In this expression,

G s(X) :=(G s(x1), G s(x2),..., G s(xn)) and

X pY :=(x1 y1, x2 y1,..., xn ym) for Y=(y1, y2,..., ym).

It can happen that the growth of tW H[w, Xt] is sublinear if the dynamics
is not sufficiently randomising. In such a case one can look for a growth
exponent.
We shall in the following pages obtain a lower bound for H[w, Xt]

in terms of particle numbers absorbed by a trap for the case of a weakly
interacting Fermion system, meaning that we may use an effective one-
particle dynamics G(a(f)) :=a(Uf) for the evolution. U is a unitary
operator on the one-particle space H. The trap will in fact define a particu-
lar partition of unity and the evolution of this partition will be linked to
the evolution of the trap states which determines in turn the number of
particles absorbed by the trap.
The reference state will be chosen accordingly as a gauge-invariant

quasi-free state. Such a state wQ is uniquely determined by its symbol Q
which is a linear operator on H satisfying 0 [ Q [ 1. The only monomials
in the creation and annihilation operators ag and a which have non-zero
expectations contain a same number of each and

wQ(ag(f1) · · · ag(fn) a(gn) · · · a(g1))=det(Ogi, QfjP).

In particular, we may choose Q=o1 for 0 [ o [ 1. Such states are homo-
geneous and in, e.g., the case of Fermions on a lattice they describe inde-
pendent Fermions occupying each site of the lattice with probability o. The
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Fock vacuum, i.e., the vector state determined by W in the Fock represen-
tation of above, corresponds to the choice o=0. The choice o=1/2 cor-
responds to the unique tracial state on A(H). A quasi-free state wQ is
known to be pure if and only if Q is an orthogonal projector. Moreover,
any wQ can be obtained as the restriction of a pure quasi-free state on a
larger CAR algebra by using the purification construction. One introduces
the auxiliary space K :=Q(1−Q) H and the projection operator

R Q `Q(1−Q)|K

`Q(1−Q) (1−Q)|K
S (26)

on H À K. For the homogeneous states Q=o1 with 0 < o < 1, K=H and
the projector becomes

R o1 `o(1−o) 1

`o(1−o) 1 (1−o) 1
S .

For a symbol Q of finite rank, the entropy of wQ is given by

S(wQ)=Tr(g(Q)+g(1−Q)). (27)

The formula can obviously be extended to compact Q with eigenvalues
converging sufficiently fast to 0.
In order to compute the dynamical entropy for quasi-free evolutions

with a quasi-free reference state, it suffices to consider a restricted class of
partitions X characterised by the property that

yW L(y) :=C
j
xgj y xj

transforms the gauge-invariant quasi-free states into themselves. For an
outline of the argument we refer to ref. 14. Such maps L are called gauge-
invariant quasi-free completely positive maps and are determined by two
linear operators V andW on H obeying the restrictions

0 [W [ 1−VgV.

On a monomial L acts as

L(a#(f1) · · · a#(fn))= C
S … {1,..., n}

E(S)1D
j ¥ S
a#(Vfj)2 wW 1D

k ¨ S
a#(fk)2 .

570 Alicki et al.



In this formula, a# denotes either a or ag and E(S) equals ±1 according to
the parity of the permutation defined by S. The quasi-free state wQ trans-
forms under L into the quasi-free state with symbol

VgQ V+W. (28)

Even if different partitions may yield the same map L, H[wQ, X] will only
depend on Q and L and we shall derive in the next proposition its expres-
sion directly in terms of Q and L.

Proposition 4.1. Let dim(H) <. and let X=(x1, x2,..., xn) be an
operational partition in A(H) such that yW;j x

g
j yxj is gauge-invariant

quasi-free determined by (V, W). Let the symbol Q determine the gauge-
invariant quasi-free state wQ, then

H[wQ, X]=S(wR) (29)

where R is the symbol on H À (Q(1−Q) H)=: H À K given by

R=R V
gQ V+W Vg

`Q(1−Q)|K

`Q(1−Q) V (1−Q)|K
S . (30)

Proof. Let us denote by (HQ, pQ, WQ) the GNS triple of wQ and by
(e1, e2,..., en) the canonical orthonormal basis of Cn. The pure state on
B(HQ) éMn induced by the vector ;j pQ(xj) WQ é ej ¥ HQ é Cn restricts
to generally mixed states on Mn and B(HQ) that have, up to multiplicities
of 0, the same spectrum. A straightforward computation shows that this
restriction to Mn is the correlation matrix r[X] and that to B(HQ) the
density matrix

C
j
|pQ(xj) WQPOpQ(xj) WQ |.

As A(H) is isomorphic to the algebra M2d where d is the dimension of
the one-particle space H, we can write that HQ=C2

d
é L with pQ(x)=

x é 1L. Therefore, there exists a unique unity preserving completely posi-
tive map C on B(HQ) determined by the requirement

C(y é z) :=1C
j

pQ(x
g
j ) ypQ(xj)2 é z, y ¥ pQ(A(H)), z ¥B(L).
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Obviously H[wQ, X]=S(|WQPOWQ | p C). It now remains to compute this
quantity.
Using the purification (26) we see that the GNS representation space

of wQ is the Fock space built on H À (Q(1−Q) H) and that C is deter-
mined by the operators (V À 1, W À 0). It suffices now to use formulas (28)
and (27) to finish the proof. L

We shall now obtain a lower bound on the dynamical entropy in terms
of currents of particles falling into a trap. This will generally not provide
the optimal lower bound but we expect it to provide the correct growth
exponent, which it certainly does in the case of linear growth. The second
quantised version of a localised trap is provided by a quasi-free completely
positive map L with operators (V, 0). In order to compute the number D of
particles that disappear from a homogeneous state wo in the trap, we con-
sider the particle number operator N in A(H). N :=;j ag(ej) a(ej) where
{e1, e2,...} is an orthonormal basis of H. We assume for the moment that H
is finite dimensional but the general case can be obtained by a suitable
limiting procedure. Then

D=wo(N−L(N))=o Tr(1−VgV).

The locality of the trap is expressed by the condition

Rank(1−VgV) <., VgV [ 1.

In our case, all refined and evolved partitions remain quasi-free with
strictly local action. An explicit computation shows that Xt is determined
by (Vt, 0) with

Vt=[VU] t U−t.

Using the explicit expression of the entropy of correlation matrix (29) in
terms of its symbol (30), we have

H[wo, Xt]=Tr(g(Rt)+g(1−Rt)) (31)

with

Rt=R oVg
t Vt `o(1−o) Vg

t

`o(1−o) Vt 1−o

S . (32)
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In order to avoid a trivial situation we assume that 0 < o < 1, in which case
the trace in (31) is taken over a space of dimension twice the rank of
1−Vg

t Vt. We write

R oVg
t Vt `o(1−o) Vg

t

`o(1−o) Vt 1−o

S=R`o Vg
t 0

`1−o 0
SR`o Vt`1−o

0 0
S=: AgA.

But then

A Ag=R1−o+oVt V
g
t 0

0 0
S .

Using that, up to multiplicities of 0, AgA and A Ag have the same spectrum
and that g(0)=g(1)=0, the entropy becomes

H[wo, Xt]=Tr[g(1−o(1−Vg
t Vt))+g(o(1−Vg

t Vt))].

Finally, as g is concave we obtain the lower bound

Proposition 4.2.

H[wo, Xt] \ {g(o)+g(1−o)} Tr(1−Vg
t Vt).

The usual computation of dynamical entropy involves two more
steps. First the computation of the asymptotic rate of entropy production
h[w, X] which consists in taking the limit for tQ. of H[w, Xt]/t and
next taking the supremum over a suitable class of operational partitions.
Proposition 4.2 is more general in the sense that it provides a lower bound
for H[w, Xt] even when this quantity scales in a sublinear way in t. We can
also use the lower bound of the proposition to show that the dynamical
entropy is strictly positive whenever there is a non-zero asymptotic current
for a trap belonging to the class of allowed partitions. We have seen that
o Tr(1−Vg

t Vt) represents the total amount of particles that disappeared
from the homogeneous state wo into the trap up to time t. The correspond-
ing current at time t is then

o Tr(Vg
t Vt−V

g
t−1Vt−1),

which is precisely the quantity considered in Section 3. In particular, the
entropy grows linearly in time if the absolutely continuous spectral sub-
space of the single-step unitary U is non-trivial. But even if U has no abso-
lutely continuous spectral component, an estimate of the growth exponent
of the entropy may be obtained.
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